

Centre

- de Recherche
- en Automatique
- de Nancy
 UMR 7039

du **BOIS**

Stimuler le développement économique de la filière bois

Enjeux et opportunités pour la transformation

André THOMAS – CRAN - ENSTIB

andre.thomas@univ-lorraine.fr

AGENDA

1) Présentation institutionnelle

2) L'industrie du futur et ses enjeux

- 3) Filière et Industries du bois
- 4) « Systèmes intelligents » pour les industries du bois
- 5) Conclusions

Présentation institutionnelle

Research Centre for Automatic Control

- Part of the University of Lorraine
- 5 different locations (mainly Nancy)
- People
 - ~ 250 persons
 - 125 full members (researchers)
 - 100 PhDs
 - 13 post-docs ...

3 departments/divisions

Organisation in 3 divisions

Control-Identification-Diagnosis (CID)

Projects:

- Identification & modelling of dynamical systems
- Control & optimisation of hybrid systems
- Robustness &Complexity
- Diagnosis & Tolerant Systems
- Co-design of safe dynamical systems

Eco-Technical Systems Engineering (ISET)

Projects:

- System Safety
- **Ambient Intelligence Systems**
- Constrained Communication Systems

Steel industry
Energy
Aerospace & spatial
Manufacturing
Defense
Health
Environment

Health-Biology-Signal (SBS)

Projects:

- Integrative biology : Cybernétics of radiation therapies
- Advanced diagnosis & translational reserch
- Innovative therapeutic strategies & et molecular targets
- Study of physiocal signals: application to cognition and epilepsy
- Multi-dimensional signals

L'industrie du futur L'industrie 4.0 ... et ses enjeux

Vous avez dit « Numérique », « Digital »?

- Numérique Digital Numérisation Digitalisation
- Produire techniquement les valeurs d'un phénomène physique, non plus sur le mode analogique (signal analogique), mais en convertissant tous les éléments qui le caractérisent, en **DONNEES** chiffrables (**DONNEES NUMERIQUES**) ...
- Données comme une suite ou un ensemble de valeurs, sous un caractère discontinu, discret ..
- Données produites, traitées, communiquées, transformées, stockées, visualisées
 ... à travers tout un ensemble de TECHNOLOGIES (capteurs, réseaux, base de données, Intelligence Artificielle, ...)

La donnée numérique, une nouvelle source de profit!

L'entreprise digitale, ses principes

- Interopérabilité: c'est la capacité que doivent avoir les éléments cyberphysiques (pièces, machines, convoyeurs ...), les hommes et les systèmes d'information d'être connectés et de communiquer via l'Internet des Objets et/ou des services.
- Virtualisation (Numérisation): c'est le fait que tout élément du système physique puisse avoir son « jumeau numérique » ; le physique et le numérique étant reliés par des capteurs, senseurs, modèles de simulation, ...
- **Décentralisation (distribution)** : c'est le fait que ces éléments connectés puissent être dotés de capacités de prise de décision sur leur devenir.
- **Connectivité temps réel** : c'est le fait de pouvoir collecter, analyser, procurer des données et connaissances en temps réel.
- Orientation service: c'est le fait de pouvoir offrir des services via l'Internet.
- **Modularité** : c'est le fait d'être conçu de telle manière de pouvoir être reconfiguré, adaptable, flexible en fonction des évolutions de l'environnement.

Filière et Industries du Bois

... caractéristiques et enjeux

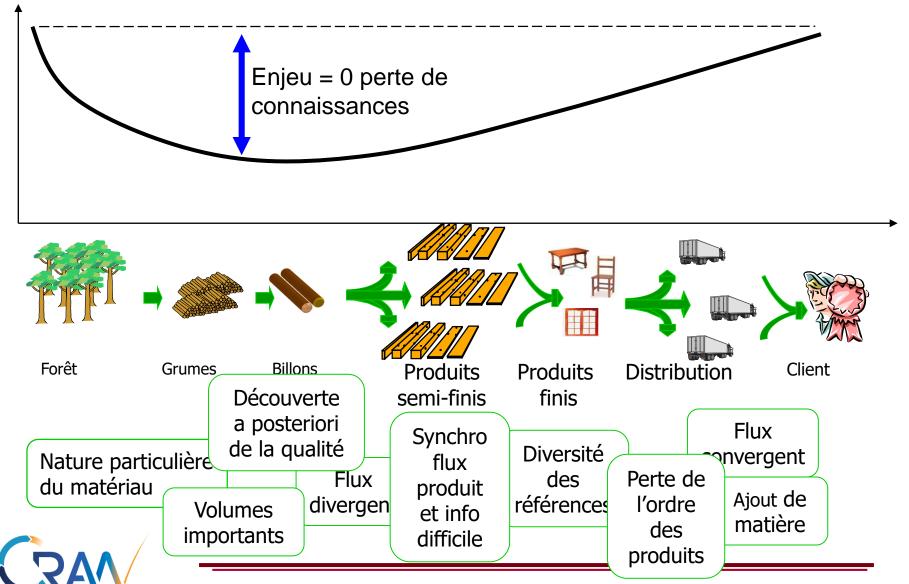
FILIÈRE BOIS - CARACTÉRISTIQUES

- Très majoritairement des TPE et PME
- Entreprises familiales, ancrées localement
- Informatique et numérique encore relativement peu développés

	Nombre d'acteurs	Volumes de sciage en moyenne	Volumes de sciage traités	Commentaires
1. Entreprises artisanales	880 scieries (47 %)	Moins de 2 000 m ³ de sciage, 600 m ³ en moyenne	300 000 m ³ (4%)	Travail local, sur- mesure Souplesse pour un sciage à façon
2. Entreprises semi-industrielles	808 scieries (43 %)	De 2 000 à 6 000 m ³ de sciage, 4 000 m ³ en moyenne	2 900 000 m ³ (35%)	Production spécialisée Moins multi-activités que les artisanales et plus tournées vers les productions volumétriques
3. Entreprises industrielles	182 scieries (10%)	De 6 000 m ³ à 20 000 m ³ de sciage, 10 000 m ³ en moyenne	5 000 000 m ³ (61%)	/
	1 870 scieries		8 200 000 m3	

FILIÈRE BOIS - ENJEUX

- Transition vers le numérique
- Efficacité Vs productivité des entreprises
- Coûts de production encore trop élevés

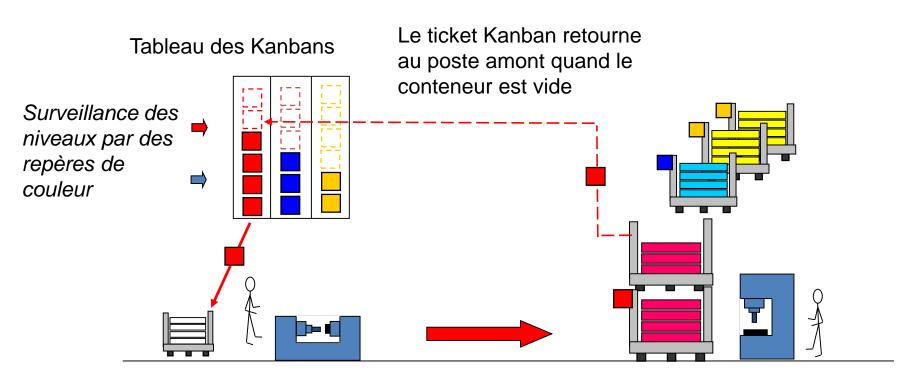

PROGRAMME NATIONAL DE LA FORÊT ET DU BOIS 2016-2026

Projet présenté au Conseil supérieur de la forêt et du bois le 8 mars 2016

Les pertes d'informations dans la filière Bois

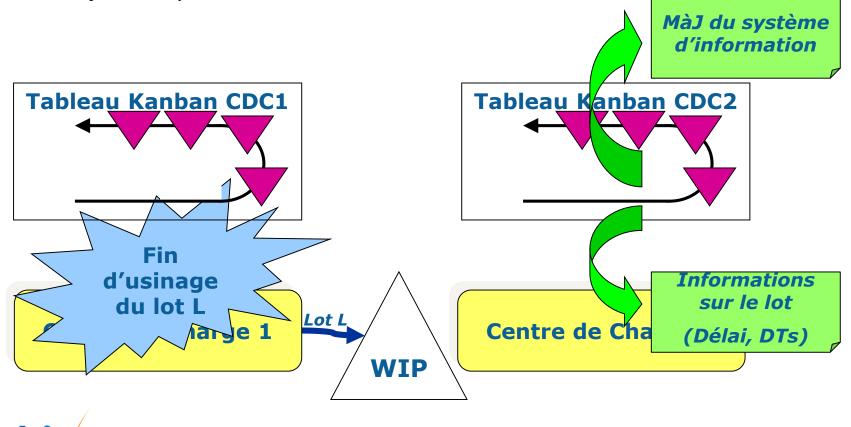
Quantité de connaissances possédées

« Systèmes intelligents » pour les Industries du Bois


Quelques illustrations de l'exploitation de données terrain dans nos entreprises

PILOTAGE DES FLUX DE PRODUITS DANS UNE USINE DE MEUBLES

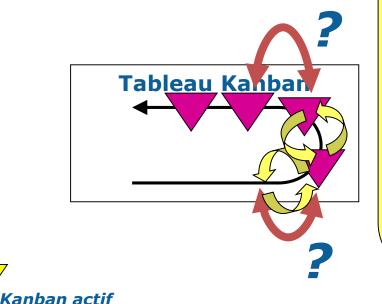
PILOTAGE DES FLUX DE PRODUITS DANS UNE USINE DE MEUBLES Le fonctionnement Kanban - Rappels



Un kanban = fabrication pour un conteneur

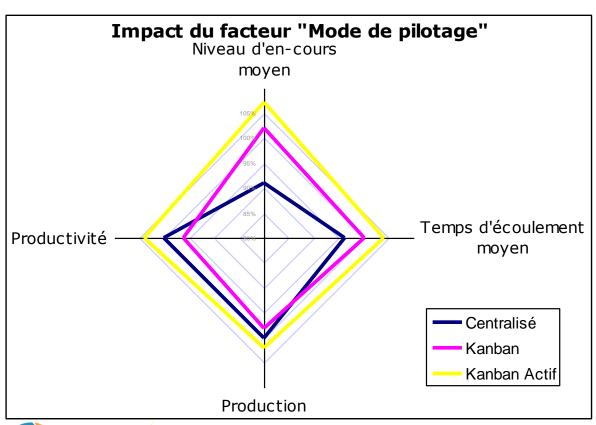
Question résiduelle = gestion des priorités entre références à choisir, effet « boite noire » ...

PILOTAGE DES FLUX DE PRODUITS DANS UNE USINE DE MEUBLES


- Le « kanban actif » devient une entité informante :
 - Apporte sur le terrain les informations permettant une prise de décision pertinente par rapport au cadre global;
 - Met à jour le système d'information centralisé.

PILOTAGE DES FLUX DE PRODUITS DANS UNE USINE DE MEUBLES

- Le terrain peut modifier l'ordre établi si cela ne perturbe pas le programme d'emballage;
- Un algorithme itératif permet d'évaluer l'opportunité de ne pas respecter les priorités établies;
- Prise en compte de la charge disponible avant emballage pour réduire les ruptures.


entrant

- 1. Arrivée d'un kanban actif;
- 2. Analyse de l'opportunité de « doubler » le kanban actif précédent ;
- 3. Si oui, interversion des deux kanbans actifs dans le train d'ordre ;
- 4. Répétition avec le kanban précédent ;
- 5. Pas d'intérêt à « doubler » le kanban actif précédent ; FIN

PILOTAGE DES FLUX DE PRODUITS DANS UNE USINE DE MEUBLES

La kanban actif:

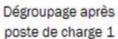
- Fluidifie l'en-cours ;
 - 6 % des en-cours
 - 4 % de temps d'écoulement.
- Est réactif en cas d'aléas ;
- Assure la continuité de charge à l'emballage;
 - + 2 % de productivité
 - + 2 % de production

GESTION DE LA QUALITÉ
ET
DÉCISION RÉACTIVE PAR
INFORMATIONS PORTÉES
PAR LES PRODUITS DANS
UN SYSTÈME COMPLEXE DE
PRODUCTION ET
LOGISTIQUE DE MOBILIERS

SITUATION

 Thèse avec une entreprise d'application dont la compétence principale est le laquage très haut de gamme.

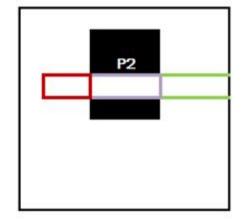
Problématiques industrielles :

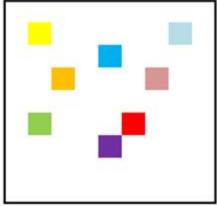

- Les pièces se perdent dans l'atelier...
 - Pb de traçabilité
- Les commandes sont souvent incomplètes lors de la livraison...
 - Pb de pilotage de la production
 - Pb de visibilité de l'en-cours
 - Pd du haut taux de non-qualité
- On ne sait pas chiffrer le coût réel d'une production donnée...
 - Pb de remontée des données
 - Pb de synthétisation des données

Objectif final:

• Développer un système de pilotage des flux de production en se focalisant sur la machine goulot.

Regroupement suivant caractéristiques poste de charge 2

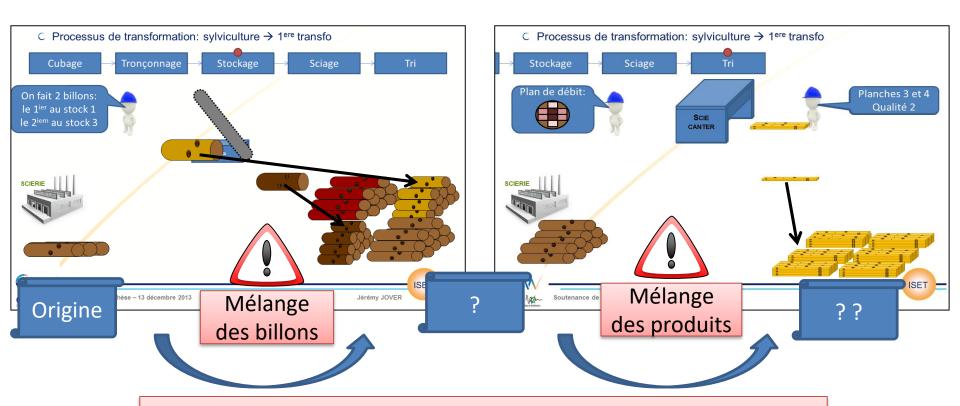

Passage sur le poste de charge 2


Dégroupage après poste de charge 2

m lots minimaux

r2 lots de fabrication pour le poste de charge 2

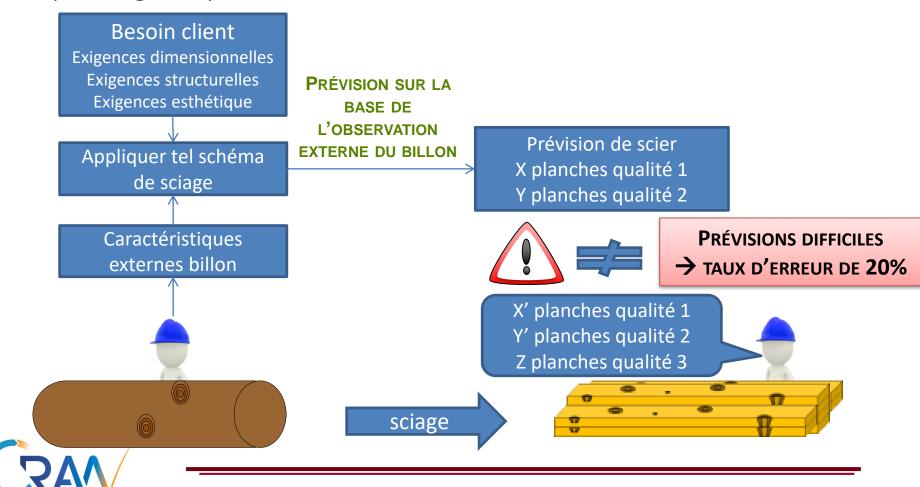
Ordonnancement simplifié des r2 lots de fabrication


m lots minimaux

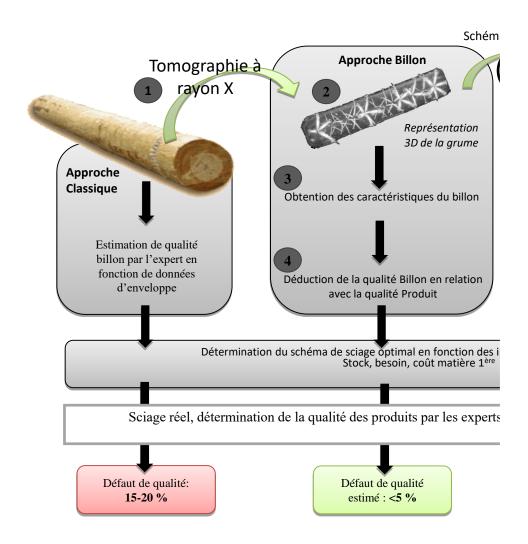
GESTION DE LA QUALITÉ
TRAÇABILITÉ
CLASSIFICATION DES SCIAGES
ET
GESTION DE LA PRODUCTION À LA
COMMANDE EN SCIERIE

L'INDUSTRIE DU BOIS: 1ER PROBLÈME

• Processus divergent: → difficulté de conservation de l'origine de la matière


DÉCOUPE DE LA MATIÈRE + STOCK = MÉLANGE DES OBJETS

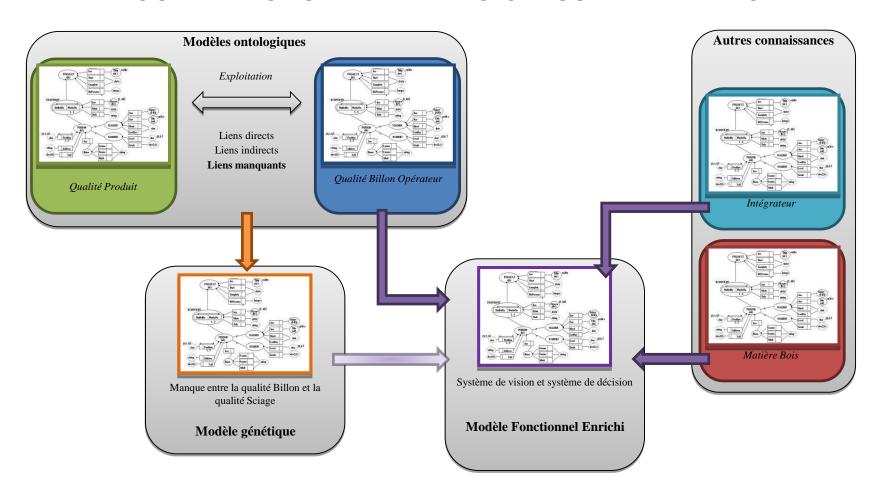
SANS TRAÇABILITÉ > PERTE DE L'INFORMATION SUR L'ORIGINE



L'INDUSTRIE DU BOIS: 2ND PROBLÈME

 Processus divergent: Problème 2 → prévision de la production incertaine et liens de parenté grume/produit inexistants

PROCESSUS DE DÉTERMINATION DE LA QUALITÉ



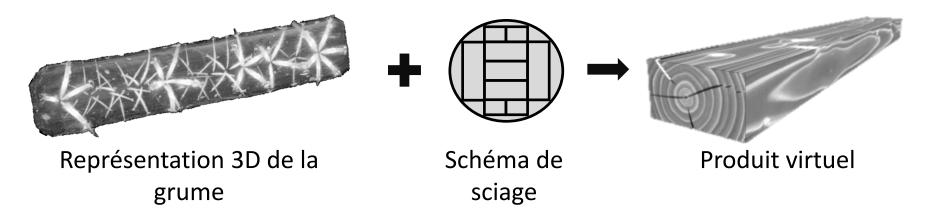
LA MODÉLISATION DES CONNAISSANCES

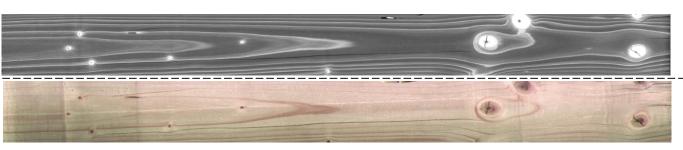
- Connaissances Métier
- Modélisation des connaissances
- Modèle Fonctionnel Enrichi (MFE)

SCHÉMA DE CONCEPTION DU MODÈLE FONCTIONNEL ENRICHI POUR LE MODULE D'AIDE AU CLASSEMENT BILLON

LES LIMITES À CE STADE ...

- Problème traçabilité non résolu
- Qualité billon obtenue mais pas celle des sciages
- On scie toujours des produits « sans client »!


PROCESSUS DE DÉTERMINATION DE LA QUALITÉ

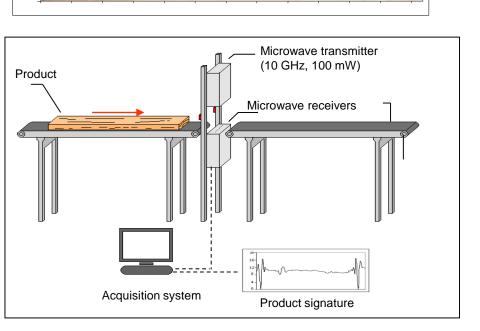

VIRTUALISATION DU PROCESSUS DE TRANSFORMATION

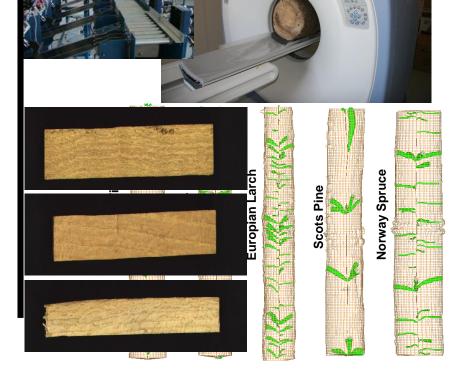
- Sciage virtuel
 - Utilisation d'un logiciel ad-hoc

VUE VIRTUELLE DU PRODUIT

> VUE RÉELLE DU PRODUIT

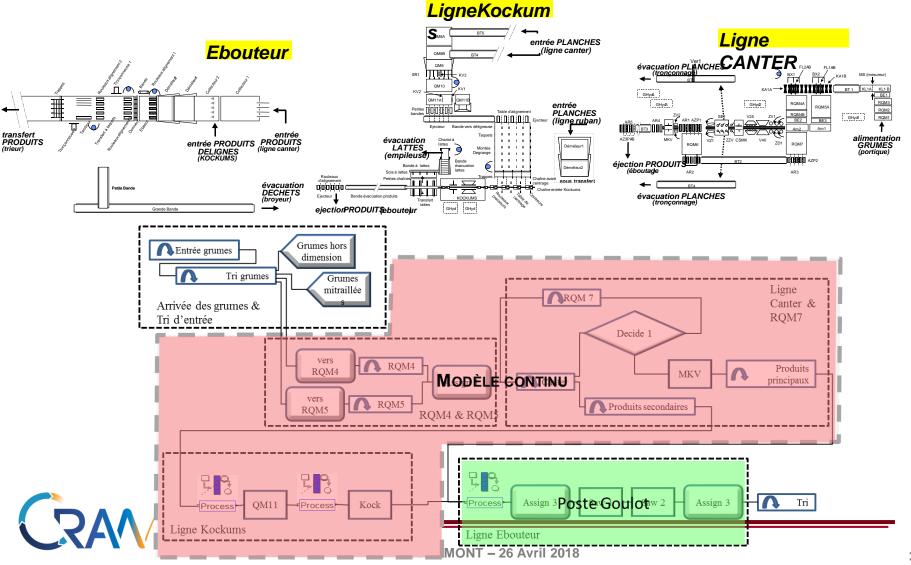
LES DEUX VUES SONT SIMILAIRES
(MIS À PART LA COULEUR)


AUTRES ILLUSTRATIONS


IDENTIFICATION BIOMETRIQUE DE PRODUITS BOIS

Chaque produit a une signature unique obtenu par un capteur micro-ondes

Chaque produit a diverses singularités obtenues par rayon X ou capteurs de vision



Signal/signature

EVALUATION DE DÉCISION EN PLANIFICATION / ORDONNANCEMENT DE CHAÎNE LOGISTIQUE

CONCLUSION

- L'industrie 4.0, c'est beaucoup le numérique
- L'industrie du futur n'est pas que pour les grosses entreprises!
- La filière bois est concernée dans tous ses métiers
- Il y a une multitude de voies pour aller vers ...
- Il faut pour chaque entreprise
 - une vision,
 - des objectifs,
 - un plan d'action structuré

MERCI DE VOTRE ATTENTION ...

Stimuler le développement économique de la filière bois

Nos publications sont à : http://hal.archives-ouvertes.fr/

• André THOMAS – CRAN - ENSTIB

andre.thomas@univ-lorraine.fr

